
Machine Learning of Othello Heuristics

William A. Greene
Computer Science Department

University of New Orleans
New Orleans, Louisiana 70148

e-mail wagcs@uno.edu
Abstract: The machine learning algorithm of [3] is ap-
plied to the problem of learning which heuristics to apply
when playing the board game Othello. The problem is
large, for there are 46,875 heuristics considered. The re-
sults are respectable; the Learner is able to beat a practiced
human player approximately fifty percent of the time. Sug-
gestions for improvement are included.

Introduction

The experimental research reported in this paper
takes as its starting point the machine learning algorithm of
[3]. In that paper was described an algorithm that learns
which are the best paths to follow through a state-space to
reach some desirable goal-state. Below we summarize that
algorithm. In this paper we apply the algorithm to the com-
plex task of learning which are the best heuristics for play-
ing the board game Othello. The skill level achieved by our
Othello-playing program is quite respectable, namely, able
to beat a skilled player (in the person of the author) approx-
imately fifty percent of the time. We suggest reasons why
the program's achieved skill level does not grow higher
than it does.

The "heuristics" our program follows in playing
Othello are not really the ones of a rule-based expert sys-
tem (so, for instance, we do no pure logic programming),
but our system is similar to such a system. Moves are cho-
sen based on how well they place the board into a favorable
configuration, as measured along featural dimensions such
as corner stability and edge stability (described later).

The world of game-playing is an idealized one. It
is a world much more completely and clearly defined, and
much less messy, than the real world we live in. Game-
playing has proved a fruitful field for artificial intelligence
research, and the board game Othello has been the testbed
for other AI researches. Rosenbloom's work [5] was the
first large-scale artificial intelligence experimentation with
Othello. More recently Othello has figured into the work
of for instance Abramson and Korf [1], DeJong and Schultz
[2], and Lee and Mahajan [4].
Othello

The board game Othello is often categorized as
being in the GO family of games. Othello is played on an
8-by-8 board of (sub)squares, like chess, but in Othello the
squares are not of different colors. There are two players,
usually called Black and White, who alternate turns. On
their turns the players place disk-shaped playing pieces,
colored black or white as appropriate, onto board squares.
Initially the board is empty except for the four central
squares, of which Black and White each possess two, at op-
posing corners. On his turn a player places a playing piece
of his color onto some square of the board in such a way as
to capture one or more squares, or equivalently disks, of his
opponent. The captured disks get replaced by those of the
capturing player's color. (Usually the playing disks are
black on one side and white on the other so they can be
flipped over after capture.)

A played piece is invariably placed in an unoccu-
pied square which is immediately adjacent (in one of the
eight directions: up, down, left, right, or one of the four di-
agonal directions) to some square currently occupied by
one's opponent. Moreover, to capture along one of the
eight directions, there must in that direction be a contigu-
ous sequence of one or more opponent squares, followed
immediately by a square of one's own color. Then the
squares captured in that direction are the opponent squares
so bounded by the newly played piece and the first piece of
one's own color.

If a player can capture by playing on a certain
square, then he captures opponent squares wherever possi-
ble in all eight directions away from that square. If there
are several unoccupied squares on which a player can play
so as to capture, then he can choose to play on any one of
them. A player who cannot play so as to capture forfeits his
turn, but remains in the game. A player may not elect to
forfeit if it is possible for him to capture.

The game is over when the board is filled or when
neither player can capture. The winner is the player with
the most occupied squares on the board at game end; tied
games are possible.

The Learning Algorithm of [3]

Now we outline the learning algorithm of [3]; that
reference should be consulted for complete details. Imag-

ine there is a state-space, some of whose states are goal-
states, representing for instance end-of-game. We begin at
some state and wend a path towards a goal-state. Some
goal-states are more desirable than others and hence some
paths are more desirable than others. At any particular step
(or state) in the process of building a path, there are several
alternative arcs out of the state that we might next follow.
Which are the better or best alternative arcs to follow? It is
exactly this question's answers that are learned by the algo-
rithm of [3].

There are many learning trials, that is, path wend-
ings. When building the current path we select among
competing alternative arcs based on how well the arcs have
participated in constructing desirable paths in the past.
Each arc has a goodness measure, an integer which at the
beginning of the learning trials has the value zero. Having
completed the path of the current trial, that path is scored
with an integer indicative of the desirability of the goal-
state reached. In [3], the algorithm was applied to the sim-
ple matchstick game NIM and the score assigned a path
was plus or minus one according as the game was won or
lost. The path's score is then added to the goodness mea-
sure of every arc participating in the path. Thus an arc with
a comparatively high goodness measure is one that, com-
pared to competing arcs, has led more frequently to desir-
able goal-states, or led to more desirable goal-states, or
both.

Finally, when building the current path, the algo-
rithm (employing a random number generator) chooses
among competing arcs in frequencies which are (more or
less) proportional to the ratios of the arcs' associated good-
ness measures.

In [3] a probabilistic proof was given to show that
this algorithm (using the ±1 path-scoring scheme cited
above, anyway) always eventually comes to overwhelming
prefer the best arcs.

The "eventually" mentioned in the preceding sen-
tence sometimes amounts to a very long time, even for the
simple game of NIM. On the other hand, the experiments
of [3] showed empirically that when taught by playing
against a semi-skilled NIM-Teacher, or when self-taught by
an initially NIM-ignorant Learner playing against a car-
bon-copy of itself, the NIM-Learner could achieve a very
high level of proficiency in a matter of several minutes.
Part of the motivation of the current research was to see
how well the learning algorithm of [3] scaled up to the
complex problem of learning which to prefer among a very
large number (46,875) of heuristics for playing Othello.

Othello Strategies

Next we give some strategy truisms about playing
Othello. Given the initial board configuration and the rules
of the game, the general trend is for the occupied portion of
the board to expand outward towards the edges and cor-
ners. The most important squares for me to occupy are the
four corner squares, for my opponent cannot possibly cap-

ture them from me. The corners act as anchors for stabiliz-
ing my squares near the corners; for instance, contiguous
edge squares I occupy that end in a corner are stable for me
(uncapturable). Also stable for me is an isosceles right tri-
angle, anchored at a corner, of squares all of my color. My
playing onto an immediate neighbor of an unoccupied cor-
ner is risky, since it may give my opponent the chance to
take the important corner square.

After the corners, generally the next most impor-
tant squares are the edge squares. An edge square I possess
provides a sort of partial stabilizing anchor for the row or
column it ends. Playing onto a square on a file (that is, row
or column) adjacent to an edge file provides some opportu-
nity for my opponent to gain edge squares. Playing onto
such a file is less desirable than playing onto a file two
away from an edge (that is, onto row 3 or 6 or column 3 or
6), for the latter play may eventually obligate my opponent
to enter the file nearer the edge.

As the occupied portion of the board expands out-
ward, in general it is good for me to play on or capture
squares two away from the corners (for the (1,1) corner, we
have in the mind the three squares (1,3), (3,3), and (3,1)).

Some Othello-playing programs exploit the above
types of considerations by assigning weights to squares ac-
cording to their position and choosing on each turn to play
on a square of best weight. Othello-playing programs that
use a pure weighted-squares strategy are easily beaten by
experienced human players.

Architecture of Othello Learning

The play of our Othello Learner can be described
in overview as follows. Of the 64 board squares, 4 are ini-
tially occupied, so a game may take up to 60 turns before
ending. Our program divides the game into five phases.
On phase one the Learner plays somewhat by rote, hugging
the center of the board. At the start of the last phase, which
comprises the last, say, 8 or 10 turns, a game tree to end-of-
game is constructed and then it is traversed by the Learner
for finishing out the game. It is during the intermediate
three phases that heuristics are followed in choosing
moves. Thus, heuristical play during mid-game leads, it is
to be hoped, to an advantageous board configuration from
which the Learner can fashion a win by looking ahead dur-
ing the final phase.

The first phase, phase one, covers the first 12 turns
(of the two players together). During this phase the Learner
uses a weighted-squares approach that has it attempt to
confine itself to the 12 squares neighboring the four initial-
ly occupied ones, and in the process to attempt to occupy
the "corners" (3,3), (3,6), (6,3), and (6,6), but this phase's
strategy will also have it take the true corner squares (1,1),
(1,8), (8,1), and (8,8) and edge squares if that becomes pos-
sible.

As said earlier, at the start of the last phase, phase
five, the Learner builds a game tree to end-of-game. Tree
construction is a variant on the mini-max procedure with

pruning. At Learner tree nodes, maximizing is done; at op-
ponent nodes, minimizing. At end-of-game nodes, the stat-
ic evaluation function is, of course, the number of squares
occupied by the Learner minus those of its opponent. In the
tree the Learner retains only its optimal moves, but retains
all responses the opponent can make to those optimal
moves. The rationale is obvious: the Learner will always
be choosing moves it knows to be optimal for itself, but the
Learner cannot know which response, optimal or other-
wise, the opponent will counter with. Tree construction has
the opponent do pruning: when a tree node corresponding
to an opponent's turn achieves an extremum (minimum)
less than its parent's extremum (maximum), the opponent
abandons examination of remaining moves available to it.
Thus, tree construction has the Learner practice space con-
servation, and the opponent, time conservation.

During the remainder of phase five the Learner
plays by tracking down the tree. If on its turn there are sev-
eral equally good moves for the Learner (in that they all can
result in the same square difference at game's end), then
one among them is chosen at random (this to introduce an
element of unpredictability when the opponent is a human
playing an interactive game against the Learner).

The Othello Heuristics

Now we describe the heuristics employed in the
middle three phases of game play. Together these phases
account for the approximately 40 middle turns taken by the
two players. The phases simply divide this group of turns
into thirds, the notion being that (for example) edge stabil-
ity and corner stability may have different relative impor-
tances in the different phases.

A move available to the Learner results in a new
board configuration, whose advantageousness to the
Learner is measured along six parameters, and they are: (1)
corner strength and potential, (2) corner stability, (3) edge
stability, (4) interior stability, (5) mobility, and (6) square
advantage. These measures are fully described below.
Some of these notions for measures we borrowed from
Rosenbloom [5], and some are of our own invention.

Calculation of all six measures follows the same
general pattern: edge stability (for example) is given an in-
teger rating both before and after the move, then the ratings
are subtracted; this difference is then an integer rating of
the change (improvement or decline) in edge stability. To
keep space costs tractable, this integer difference is con-
verted to a value in the small linear type <VeryLow, Low,
Middling, High, VeryHigh>. Each move is thus associated
with a 7-tuple, (1) game phase, in the range 2..4, (2) corner
strength and potential, in the range VeryLow..VeryHigh,
..., and (7) square advantage, in the range VeryLow..Very-
High. The 3 * 5**6 = 46,875 such 7-tuples are, in fact, our
program's different "heuristics". (Note that two moves
available to the Learner may get associated with the same
heuristic.) Each heuristic has an associated "WinMeasure",
which is an integer that tallies how well moves of such heu-

ristical measurement have in the past participated in games
of favorable conclusion for the Learner.

In the NIM-playing program of [3], (analogous)
WinMeasure's were changed by adding plus or minus one
according as the NIM game was won or lost. For the Oth-
ello program of this research, each heuristic employed in
the chain of Learner turns on the current game gets its re-
ward or punishment by adding to its WinMeasure the
amount D = the difference in squares possessed by the
Learner and opponent at end-of-game. (To win by many
squares is a better win. In fact, in Othello competition
among humans, handicapping is employed, such as: player
A must beat player B by at least 10 squares.)

Of the several moves available to the Learner on a
particular turn, the Learner chooses a move whose associ-
ated heuristic has a high WinMeasure. Actually, a heuristic
with a high WinMeasure is first chosen, and then one of the
moves associated with it is chosen. Specifically, as in [3],
if the heuristics at hand are {hi} and have respective Win-
Measures {WMi} then the k-th heuristic hk is chosen with a
likelihood of WMk / (ΣiWMi). (If need be we first translate
the set of WinMeasures into a range of positive integers.)
All the moves associated with the chosen heuristic might
outwardly be taken to be equally good, but we in fact do not
choose one at random. Instead, our algorithm, during
phase 2 for instance, chooses the associated move with the
highest integer change in corner strength and potential. The
reason for choosing corner strength and potential as the
phase 2 "tie breaker" was: it was this feature that most
tended to exhibit VeryHigh values among phase 2 heuris-
tics with large positive WinMeasures and exhibit VeryLow
values among phase 2 heuristics with large negative Win-
Measures. Similarly, on phases 3 and 4, it is the move
(among those associated with the chosen heuristic) with the
highest integer change in, respectively, edge stability and
corner stability that is the one the Learner chooses.

Our use of the term heuristic is not inappropriate.
If one of our heuristics has achieved a high WinMeasure
then a move M associated with it has a good chance of be-
ing chosen, and consequently play proceeds as though the
Learner had reasoned

 IF it is phase 2

 AND move M results in a VeryHigh change in

 edge stability

 AND move M results in a Middling change in

mobility

 AND

 THEN give considerable likelihood to choosing move M

The 6 Board Ratings

Now we describe the six board features. Actually
what we shall describe are the six integer-valued ratings
given to a board. (Recall, the board will be given an integer
rating before a potential Learner move, the board resulting

from the move will be re-rated, ultimately the ratings will
be subtracted and the integer difference converted to a val-
ue in the range VeryLow..VeryHigh.)

Corner strength and potential is a sum of strength-
and-potential assessments over each of the four corners. It
is intended to be helpful for steering play during earlier
phases when the corner regions are thinly filled. What is
measured is the degree to which a corner region is already
advantageous or offers positive opportunities or poses risks
to the Learner. The assessment adds and subtracts weights
devised from the author's own experience with Othello, and
is somewhat ad hoc.

Corner stability is a sum of stability ratings over
the four corner regions. The algorithm starts at a corner
and considers the sequence of increasingly longer diagonal
lines which are "perpendicular to" the corner and which
progress towards the board's center. For a diagonal line, the
algorithm counts the number of contiguous Learner
squares which start at an edge and extend inwards, possibly
all the way to the next edge. If the Learner squares do ex-
tend to the next edge, then the algorithm proceeds on to the
next diagonal, else it stops its examination of this corner re-
gion. Essentially what is counted is the number of squares
in the largest isosceles right triangle anchored at the corner
which is entirely occupied by Learner squares. All the
squares counted are stable for the Learner.

To describe edge stability and interior stability, we
first must describe line stability. Imagine a line of eight
board squares, each of which is either black or white or un-
occupied. A typical such line is a board edge, though as
will be seen we let for example an arbitrary board row also
be abstracted as such a line. We solely consider future
moves onto unoccupied squares of this line. An occupied
black square is categorized as being either unstable-for-
black (can be captured by some very next move onto this
line) or semistable-for-black (not capturable on the very
next play but is capturable under some combination of fu-
ture moves, some of which may be Black's) or stable-for-
black (cannot be captured by any combination of future
moves onto this line). Occupied white squares are similar-
ly categorized. The term line stability is a bit of a misno-
mer; it is not the stability of the line but rather that of the
occupied squares on it that interests us.

Line stabilities are not computed on the fly; in-
stead, all lines' stabilities are computed at program start-up
time and saved in an array (with 3**8 = 6561 components).
The algorithm for doing so uses dynamic programming:
assuming we have already computed the stability of every
line having N unoccupied squares, then we can easily com-
pute the stability of a line with N+1 unoccupied squares.

The computation for the edge stability rating is
now easily described, and is the sum of measurements for
the four edges. We use our line stability table. For each
edge the measure is 10*A + 3*B + C, where A is the num-
ber of squares stable for the Learner minus the number sta-
ble for the opponent, and B and C are the analogous

differences for semistable and unstable. The coefficients
10, 3, and 1 are somewhat ad hoc.

We note in passing that corner possession is re-
warded by each of the three measurements described so far.

The procedures for computing corner and edge
stability carry an extra parameter, a "stability board" whose
squares get marked as stable for the Learner when they are
found to be so. The procedure for computing interior sta-
bility continues to mark this board on its interior squares.
The interior squares are traversed in an inward spiral: first
row 2's positions 2 to 6, then column 7's positions 2 to 6,
then row 7's positions 7 to 3, then column 2's position's 7 to
3, then row 3's positions 3 to 5, then column 6's positions 3
to 5, and so on into the center of the board. For each inte-
rior square in the spiral, our reasoning, only heuristic, is as
follows. If in each of the four bi-directions (horizontal,
vertical, and the two diagonal ones) an interior square S
possessed by the Learner has an immediate neighbor which
is stable for the Learner, then we assert that S is stable for
the Learner by so marking the stability board. Barring sat-
isfaction of the antecedent of the preceding sentence, we
exploit the line stability table as follows. If the square S is
stable (versus semistable or unstable) for the Learner when
viewed as an element of the four lines that are the row, the
column, and the two (stretched) diagonals containing S,
then we assert that S is stable for the Learner by so marking
the stability board. With respect to the preceding sentence,
we are stymied (unable to assert that S is stable for the
Learner) if a diagonal is not stretchable to a full line of 8
squares. Stretchable by definition means that one of the di-
agonal's ending edge squares is occupied (by either player)
and then stretching consists of padding with the color of
that ending edge square.

Finally, the interior stability rating is the number
of interior squares marked stable for the Learner.

By a player's immediate mobility we mean the
number of squares he can now play upon, that is, capture
from. By his future mobility we give the meaning the num-
ber of unoccupied squares which are not now playable
upon but at least do neighbor one of his opponent's squares.
By his mobility we give the meaning 2 * immediate-mobil-
ity + future-mobility. The coefficients 2 and 1 are some-
what ad hoc.

Let us note that in taking the differences in integer
board ratings across a potential Learner move, for the mo-
bility feature we make an exception and use the Learner's
mobility before the move but the opponent's mobility after
the move. The difference is then the exchange in the play-
ers' mobilities.

The square advantage rating given a board is sim-
ply the number of squares possessed by the Learner minus
that by the opponent. (The difference in ratings across a
potential Learner move is easily seen to equal 1 + 2*C
where C is the number of squares captured on the move.)

More about Architecture

Within our computer program for playing Othello
there are three agents who play the game, namely, the
Learner, the Teacher, and the Human. The algorithmic be-
havior of the Learner has already been described. The
Teacher provides practical instruction in Othello-playing
by playing games against the Learner in so-called "learning
bursts", consisting perhaps of 500 or 5000 consecutive
games. Presumably the Teacher provides play which is to
some degree informed; the Teacher might for example play
by a weighted squares strategy. Alternatively, in the cur-
rent version of our program the Teacher is a carbon copy of
the Learner and plays by accessing (reading and updating)
the same database of 46,875 heuristics and their WinMea-
sures as is accessed by the Learner. We call this self-taught
learning, for in effect the Learner is playing against himself
in order to learn by experience which are the better moves.

The Human participates interactively. Typically
the human dictates that a learning burst take place, then
plays several interactive games against the Learner, then
dictates a further learning burst, and so on.

For the database of the 46,875 heuristics and their
WinMeasures there are several options available. The
WinMeasures can be initialized to zero. Or they can be pre-
weighted so that for instance a large WinMeasure is initial-
ly attributed to any heuristic containing many VeryHigh's
in its 7-tuple of values. A third alternative is that the Win-
Measures can be read in from an external file; at the end of
a session they can also be written to a file. Using external
files it is practical to let learning experiments stretch over
days.

Experimental Results

Next we describe the results of Othello learning
experiments. Our work went through a number of versions
and variants. Our initial approach was to have the Teacher
play by a weighted-squares strategy, but the game skill thus
acquired by the Learner was noticeably weak, and so we
abandoned such a Teacher in favor of one that was a carbon
copy of the Learner (self-taught learning). With respect to
initial knowledge, we tried three approaches: all WinMea-
sures start at initial value zero, WinMeasures are initially
pre-weighted, and thirdly, the author playing interactively
starts off the learning with 25 games from a practiced play-
er.

Our computer program was written in Ada,
reached a length of 5000 lines, and was run on a VAX-11/
8600. For the various approaches, many games -- up to
50,000 and beyond -- were played. In general, CPU time
on the order of 12 hours was required to play 10,000 learn-
ing-burst games.

In our best results, described later, the Learner
was able to beat the author in better than 60% of the games
in a small sample of games.

For the various versions, examination of Win-

Measures and the moves associated with them consistently
showed evidence that learning had taken place. Recall that
a heuristic is a 7-tuple whose first component (game phase)
is in the range 2..4, and whose other six (board features) are
in the range VeryLow..VeryHigh. Consistently, 3 or 4 heu-
ristics containing all or nearly all VeryHigh's achieved very
large WinMeasures. (Later we suggest a reason why more
such "good" heuristics did not rise like cream to the com-
parative top.) Also, risky moves onto corner-endangering
squares like (1,2) and (2,2) were observed being associated
with heuristics having very negative WinMeasures. Addi-
tionally, it was observed that the Learner played towards a
"cross endgame" whereby the four squares around each of
the four corners are vacant, those regions are entirely bor-
dered by Learner squares, and the rest of the board is filled.
There are 16 vacant squares altogether on such a board (so
the lookahead has not yet taken place), and necessarily the
Learner will take at least one corner and probably several.

Curiously, for each of our three choices for initial
knowledge (WinMeasures are initially zero, are pre-
weighted, or thirdly result from 25 games against the au-
thor), it was seen that even after many games only relative-
ly few heuristics actually got used, as demonstrated by the
fact that their WinMeasures had changed from their initial
values. Typically, only about 700 (resp., 2000, 4500) of
the heuristics for phase 2 (resp., phases 3 and 4) had actu-
ally been used even after 50,000 games.

Our Learner will never play perfect Othello, be-
cause of its subalgorithm for selecting heuristics and
moves; note that every heuristic retains some likelihood of
being chosen. This is a mixed blessing. On the positive
side, a good heuristic cannot be permanently blackballed
due to some applications of it during early losing games.
On the negative side, poor heuristics always have some
likelihood, even if small, of being chosen.

Invariably our Learner never learned adequate ag-
gressiveness in corner capturing; perhaps this is because
only four corner captures can occur in a game. Similarly,
the Learner too often made plays that sacrificed corners to
the author. We attempted to solve these problems with an
extra procedure that warped ratings so as to prejudice the
selection of heuristics when corner play was involved, but
were unsuccessful. We believe a distinct improvement
would be a front-end to move selection that first tries to
take corners and avoid jeopardizing corners, and barring
that to make move selection as originally described.

To chart the course of learning we scheduled a
learning burst of 10,000 games between the Learner and
Teacher, and then the author played ten or so games against
the Learner. This was followed by a further learning burst
to 20,000 games, then another ten or so games against the
author, and so on. Playing ten or so games against the au-
thor provides only a small sample of Learner achievement,
but no other alternative was available to the author.

Our best results, in which the Learner beat the au-
thor on 7 of 11 games, arose in two different ways.

One of the two "best results" arose by pre-weight-
ing the WinMeasures, followed by only 10,000 learning
burst games. Pre-weighting was achieved by adding -500,
-100, 0, 100, 500, resp., for each occurrence of VeryLow,
Low, Middling, High, VeryHigh, resp., in the heuristic at
hand (the maximum pre-weight is 3000). Under further
learning beyond the 10,000 game mark, the Learner's suc-
cess against the author declined to winning only 40 to 50
percent of the ten or so games. We hypothesize the follow-
ing explanation. There are good moves which arise only
relatively rarely, such as taking corners, or moves that
achieve very high improvements in interior stability. After
only 10,000 games the pre-weights are still large enough,
comparatively, to enable selection of such moves when
they are available. After many more learning games the
WinMeasures of comparatively weaker but more frequent-
ly arising heuristics have grown very large and the better
moves get swamped.

We believe this same analysis explains why, for
most of the other variants and approaches we explored,
even after 50,000 or 60,000 games the Learner's success
rate against the author was stuck in the 40 to 50 percent
range.

The second of our best results (Learner wins 7 of
11 games against the author) was achieved by deepening
the lookahead on those 11 games. For all our versions, for
time reasons the Learner's lookahead during learning bursts
was not made until only 8 vacant squares remained. We
achieved the second of our best results under the following
scenario. WinMeasures were initialized to zero, and
60,000 learning burst games were played. Then for playing
against the author, the Learner's lookahead was made when
10 vacant squares remained. For timed competitive play
(timed in the sense that like competitive chess both adver-
saries have a fixed quantity of time for choosing the totality
of their moves in one game), probably the lookahead could
be inched up another ply or two.

Further Remarks and Observations

About our experiments we make the following
general remarks and observations. Initializing WinMea-
sures via 25 games against an experienced player seems to
provide too little information to make this approach have
noticeably different results from the other approaches.

As opposed to the difference in board goodness
before and after one potential Learner move, we also inves-
tigated a 2-ply approach in which an attempt was made to
incorporate some consideration for the opponent's most ag-
gressive response, but this proved much too time-expen-
sive.

Phase 4 "good" heuristics developed large Win-
Measures much more rapidly than those of phases 2 and 3.
This seems to illustrate the propagation of skill backwards
from game-end towards game-start that is mentioned in [3].
Moveover, the highly favored phase 2 and 3 heuristics were
in fact not so "good". Perhaps an improvement is, after a

certain amount of learning, to re-initialize WinMeasures
for phases 2 and 3 and re-start the learning for those phases.

Curiously, playing against the carbon-copy
Teacher, the Learner consistently won noticeably more of-
ten by playing second than by playing first. The reason for
this is unexplained. Perhaps playing second let the Learner
more often look ahead 8 moves as opposed to 7. Perhaps
in Othello there is an inherent advantage to playing second.

Inspection of heuristics and their WinMeasures
suggests that the aspect of mobility does not have the great
significance to mid-game play that Rosenbloom [5] at-
tributes to it.

Concluding Remarks

We cannot claim our Learner was extravagantly
successful in acquiring skill at Othello, but we do feel the
degree of learning was quite respectable. The Learner did
not invent its own heuristics, rather it weighed among those
we had provided. The quality of the provided heuristics
would seem to place an inevitable upper bound on the game
skill acquired -- if the heuristics are suboptimal, would not
even their judicious application still result in suboptimal
play?

We have marked our Learner's successes and
weaknesses, and suggested explanations and corrections
for some of the latter. Ours was a large problem -- 46,875
is a large number of heuristics. The heuristics in a produc-
tion expert system typically number only in the hundreds.
We retain the belief that the learning algorithm of [3] can
be successfully used to reveal which are the better heuris-
tics to line up for steering a path to success in, say, an expert
system for managing a crisis in a nuclear power plant, as
suggested in [3].

References

1. Abramson, Bruce, and Korf, Richard E., "A model of
two-player evaluation functions", Proceedings of
the Sixth National Conference on Artificial Intel-
ligence, Seattle, WA, 1987, pp. 90-94.

2. DeJong, Kenneth, and Schultz, Alan, "Using experience-
based learning in game playing", Proceedings of
the Fifth International Conference on Machine
Learning, Ann Arbor, MI, 1988, pp. 284-290.

3. Greene, William A., "A learning algorithm that always
learns best alternatives", Proceedings of IEEE
SouthEastCon-90, April 1990, New Orleans, LA,
pp. 194-198.

4. Lee, Kai-Fu, and Mahajan, Sanjoy, "The development of
a world class Othello program", Artificial Intelli-
gence 43 (1990), pp. 21-36.

5. Rosenbloom, Paul S., "A world-championship-level
Othello program", Artificial Intelligence 19
(1982), pp. 279-320.

	Introduction
	Othello
	The Learning Algorithm of [3]
	Othello Strategies
	Architecture of Othello Learning
	The Othello Heuristics
	The 6 Board Ratings
	More about Architecture
	Experimental Results
	Further Remarks and Observations
	Concluding Remarks
	References
	Machine Learning of Othello Heuristics
	William A. Greene
	Computer Science Department
	University of New Orleans
	New Orleans, Louisiana 70148
	e-mail wagcs@uno.edu

