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Abstract: The machine learning algorithm of [3] is ap-
plied to the problem of learning which heuristics to apply 
when playing the board game Othello. The problem is 
large, for there are 46,875 heuristics considered. The re-
sults are respectable; the Learner is able to beat a practiced 
human player approximately fifty percent of the time.  Sug-
gestions for improvement are included.

Introduction

The experimental research reported in this paper 
takes as its starting point the machine learning algorithm of 
[3].  In that paper was described an algorithm that learns 
which are the best paths to follow through a state-space to 
reach some desirable goal-state.  Below we summarize that 
algorithm.  In this paper we apply the algorithm to the com-
plex task of learning which are the best heuristics for play-
ing the board game Othello.  The skill level achieved by our 
Othello-playing program is quite respectable, namely, able 
to beat a skilled player (in the person of the author) approx-
imately fifty percent of the time.  We suggest reasons why 
the program's achieved skill level does not grow higher 
than it does.

The "heuristics" our program follows in playing 
Othello are not really the ones of a rule-based expert sys-
tem (so, for instance, we do no pure logic programming), 
but our system is similar to such a system.  Moves are cho-
sen based on how well they place the board into a favorable 
configuration, as measured along featural dimensions such 
as corner stability and edge stability (described later).

The world of game-playing is an idealized one.  It 
is a world much more completely and clearly defined, and 
much less messy, than the real world we live in.  Game-
playing has proved a fruitful field for artificial intelligence 
research, and the board game Othello has been the testbed 
for other AI researches.  Rosenbloom's work [5] was the 
first large-scale artificial intelligence experimentation with 
Othello.  More recently Othello has figured into the work 
of for instance Abramson and Korf [1], DeJong and Schultz 
[2], and Lee and Mahajan [4].
Othello

The board game Othello is often categorized as 
being in the GO family of games.  Othello is played on an 
8-by-8 board of (sub)squares, like chess, but in Othello the 
squares are not of different colors.  There are two players, 
usually called Black and White, who alternate turns.  On 
their turns the players place disk-shaped playing pieces, 
colored black or white as appropriate, onto board squares.  
Initially the board is empty except for the four central 
squares, of which Black and White each possess two, at op-
posing corners.  On his turn a player places a playing piece 
of his color onto some square of the board in such a way as 
to capture one or more squares, or equivalently disks, of his 
opponent.  The captured disks get replaced by those of the 
capturing player's color.  (Usually the playing disks are 
black on one side and white on the other so they can be 
flipped over after capture.)

A played piece is invariably placed in an unoccu-
pied square which is immediately adjacent (in one of the 
eight directions:  up, down, left, right, or one of the four di-
agonal directions) to some square currently occupied by 
one's opponent.  Moreover, to capture along one of the 
eight directions, there must in that direction be a contigu-
ous sequence of one or more opponent squares, followed 
immediately by a square of one's own color.  Then the 
squares captured in that direction are the opponent squares 
so bounded by the newly played piece and the first piece of 
one's own color.

If a player can capture by playing on a certain 
square, then he captures opponent squares wherever possi-
ble in all eight directions away from that square.  If there 
are several unoccupied squares on which a player can play 
so as to capture, then he can choose to play on any one of 
them.  A player who cannot play so as to capture forfeits his 
turn, but remains in the game.  A player may not elect to 
forfeit if it is possible for him to capture.  

The game is over when the board is filled or when 
neither player can capture.  The winner is the player with 
the most occupied squares on the board at game end; tied 
games are possible.

The Learning Algorithm of [3]

Now we outline the learning algorithm of [3]; that 
reference should be consulted for complete details.  Imag-



ine there is a state-space, some of whose states are goal-
states, representing for instance end-of-game.  We begin at 
some state and wend a path towards a goal-state.  Some 
goal-states are more desirable than others and hence some 
paths are more desirable than others.  At any particular step 
(or state) in the process of building a path, there are several 
alternative arcs out of the state that we might next follow.  
Which are the better or best alternative arcs to follow?  It is 
exactly this question's answers that are learned by the algo-
rithm of [3].

There are many learning trials, that is, path wend-
ings.  When building the current path we select among 
competing alternative arcs based on how well the arcs have 
participated in constructing desirable paths in the past.  
Each arc has a goodness measure, an integer which at the 
beginning of the learning trials has the value zero.  Having 
completed the path of the current trial, that path is scored 
with an integer indicative of the desirability of the goal-
state reached.  In [3], the algorithm was applied to the sim-
ple matchstick game NIM and the score assigned a path 
was plus or minus one according as the game was won or 
lost.  The path's score is then added to the goodness mea-
sure of every arc participating in the path.  Thus an arc with 
a comparatively high goodness measure is one that, com-
pared to competing arcs, has led more frequently to desir-
able goal-states, or led to more desirable goal-states, or 
both.

Finally, when building the current path, the algo-
rithm (employing a random number generator) chooses 
among competing arcs in frequencies which are (more or 
less) proportional to the ratios of the arcs' associated good-
ness measures.

In [3] a probabilistic proof was given to show that 
this algorithm (using the ±1 path-scoring scheme cited 
above, anyway) always eventually comes to overwhelming 
prefer the best arcs.

The "eventually" mentioned in the preceding sen-
tence sometimes amounts to a very long time, even for the 
simple game of NIM.  On the other hand, the experiments 
of [3] showed empirically that when taught by playing 
against a semi-skilled NIM-Teacher, or when self-taught by 
an initially NIM-ignorant Learner playing against a car-
bon-copy of itself, the NIM-Learner could achieve a very 
high level of proficiency in a matter of several minutes.  
Part of the motivation of the current research was to see 
how well the learning algorithm of [3] scaled up to the 
complex problem of learning which to prefer among a very 
large number (46,875) of heuristics for playing Othello.

Othello Strategies

Next we give some strategy truisms about playing 
Othello.  Given the initial board configuration and the rules 
of the game, the general trend is for the occupied portion of 
the board to expand outward towards the edges and cor-
ners.  The most important squares for me to occupy are the 
four corner squares, for my opponent cannot possibly cap-

ture them from me.  The corners act as anchors for stabiliz-
ing my squares near the corners; for instance, contiguous 
edge squares I occupy that end in a corner are stable for me 
(uncapturable).  Also stable for me is an isosceles right tri-
angle, anchored at a corner, of squares all of my color.  My 
playing onto an immediate neighbor of an unoccupied cor-
ner is risky, since it may give my opponent the chance to 
take the important corner square.

After the corners, generally the next most impor-
tant squares are the edge squares.  An edge square I possess 
provides a sort of partial stabilizing anchor for the row or 
column it ends.  Playing onto a square on a file (that is, row 
or column) adjacent to an edge file provides some opportu-
nity for my opponent to gain edge squares.  Playing onto 
such a file is less desirable than playing onto a file two 
away from an edge (that is, onto row 3 or 6 or column 3 or 
6), for the latter play may eventually obligate my opponent 
to enter the file nearer the edge.

As the occupied portion of the board expands out-
ward, in general it is good for me to play on or capture 
squares two away from the corners (for the (1,1) corner, we 
have in the mind the three squares (1,3), (3,3), and (3,1)).

Some Othello-playing programs exploit the above 
types of considerations by assigning weights to squares ac-
cording to their position and choosing on each turn to play 
on a square of best weight.  Othello-playing programs that 
use a pure weighted-squares strategy are easily beaten by 
experienced human players.

Architecture of Othello Learning

The play of our Othello Learner can be described 
in overview as follows.  Of the 64 board squares, 4 are ini-
tially occupied, so a game may take up to 60 turns before 
ending.  Our program divides the game into five phases.  
On phase one the Learner plays somewhat by rote, hugging 
the center of the board.  At the start of the last phase, which 
comprises the last, say, 8 or 10 turns, a game tree to end-of-
game is constructed and then it is traversed by the Learner 
for finishing out the game.  It is during the intermediate 
three phases that heuristics are followed in choosing 
moves.  Thus, heuristical play during mid-game leads, it is 
to be hoped, to an advantageous board configuration from 
which the Learner can fashion a win by looking ahead dur-
ing the final phase.

The first phase, phase one, covers the first 12 turns 
(of the two players together).  During this phase the Learner 
uses a weighted-squares approach that has it attempt to 
confine itself to the 12 squares neighboring the four initial-
ly occupied ones, and in the process to attempt to occupy 
the "corners" (3,3), (3,6), (6,3), and (6,6), but this phase's 
strategy will also have it take the true corner squares (1,1), 
(1,8), (8,1), and (8,8) and edge squares if that becomes pos-
sible.

As said earlier, at the start of the last phase, phase 
five, the Learner builds a game tree to end-of-game.  Tree 
construction is a variant on the mini-max procedure with 



pruning.  At Learner tree nodes, maximizing is done; at op-
ponent nodes, minimizing.  At end-of-game nodes, the stat-
ic evaluation function is, of course, the number of squares 
occupied by the Learner minus those of its opponent.  In the 
tree the Learner retains only its optimal moves, but retains 
all responses the opponent can make to those optimal 
moves.  The rationale is obvious:  the Learner will always 
be choosing moves it knows to be optimal for itself, but the 
Learner cannot know which response, optimal or other-
wise, the opponent will counter with.  Tree construction has 
the opponent do pruning: when a tree node corresponding 
to an opponent's turn achieves an extremum (minimum) 
less than its parent's extremum (maximum), the opponent 
abandons examination of remaining moves available to it.  
Thus, tree construction has the Learner practice space con-
servation, and the opponent, time conservation.

During the remainder of phase five the Learner 
plays by tracking down the tree.  If on its turn there are sev-
eral equally good moves for the Learner (in that they all can 
result in the same square difference at game's end), then 
one among them is chosen at random (this to introduce an 
element of unpredictability when the opponent is a human 
playing an interactive game against the Learner).

The Othello Heuristics

Now we describe the heuristics employed in the 
middle three phases of game play.  Together these phases 
account for the approximately 40 middle turns taken by the 
two players.  The phases simply divide this group of turns 
into thirds, the notion being that (for example) edge stabil-
ity and corner stability may have different relative impor-
tances in the different phases.

A move available to the Learner results in a new 
board configuration, whose advantageousness to the 
Learner is measured along six parameters, and they are:  (1) 
corner strength and potential, (2) corner stability, (3) edge 
stability, (4) interior stability, (5) mobility, and (6) square 
advantage.  These measures are fully described below.  
Some of these notions for measures we borrowed from 
Rosenbloom [5], and some are of our own invention.

Calculation of all six measures follows the same 
general pattern:  edge stability (for example) is given an in-
teger rating both before and after the move, then the ratings 
are subtracted; this difference is then an integer rating of 
the change (improvement or decline) in edge stability.  To 
keep space costs tractable, this integer difference is con-
verted to a value in the small linear type  <VeryLow, Low, 
Middling, High, VeryHigh>.  Each move is thus associated 
with a 7-tuple, (1) game phase, in the range 2..4, (2) corner 
strength and potential, in the range VeryLow..VeryHigh,  
..., and (7) square advantage, in the range VeryLow..Very-
High.  The 3 * 5**6 = 46,875 such 7-tuples are, in fact, our 
program's different "heuristics".  (Note that two moves 
available to the Learner may get associated with the same 
heuristic.)  Each heuristic has an associated "WinMeasure", 
which is an integer that tallies how well moves of such heu-

ristical measurement have in the past participated in games 
of favorable conclusion for the Learner.

In the NIM-playing program of [3], (analogous) 
WinMeasure's were changed by adding plus or minus one 
according as the NIM game was won or lost.  For the Oth-
ello program of this research, each heuristic employed in 
the chain of Learner turns on the current game gets its re-
ward or punishment by adding to its WinMeasure the 
amount  D = the difference in squares possessed by the 
Learner and opponent at end-of-game.  (To win by many 
squares is a better win.  In fact, in Othello competition 
among humans, handicapping is employed, such as:  player 
A must beat player B by at least 10 squares.)

Of the several moves available to the Learner on a 
particular turn, the Learner chooses a move whose associ-
ated heuristic has a high WinMeasure.  Actually, a heuristic 
with a high WinMeasure is first chosen, and then one of the 
moves associated with it is chosen.  Specifically, as in [3], 
if the heuristics at hand are {hi} and have respective Win-
Measures {WMi} then the k-th heuristic hk is chosen with a 
likelihood of WMk / (ΣiWMi).  (If need be we first translate 
the set of WinMeasures into a range of positive integers.)  
All the moves associated with the chosen heuristic might 
outwardly be taken to be equally good, but we in fact do not 
choose one at random.  Instead, our algorithm, during 
phase 2 for instance, chooses the associated move with the 
highest integer change in corner strength and potential. The 
reason for choosing corner strength and potential as the 
phase 2 "tie breaker" was:  it was this feature that most 
tended to exhibit VeryHigh values among phase 2 heuris-
tics with large positive WinMeasures and exhibit VeryLow 
values among phase 2 heuristics with large negative Win-
Measures.  Similarly,  on phases 3 and 4, it is the move 
(among those associated with the chosen heuristic) with the 
highest integer change in, respectively, edge stability and 
corner stability that is the one the Learner chooses.

Our use of the term heuristic is not inappropriate.  
If one of our heuristics has achieved a high WinMeasure 
then a move M associated with it has a good chance of be-
ing chosen, and consequently play proceeds as though the 
Learner had reasoned

   IF  it is phase 2

        AND  move M results in a VeryHigh change in 

        edge stability

        AND  move M results in a Middling change in         

mobility

        AND  ....

   THEN  give considerable likelihood to choosing move M

The 6 Board Ratings

Now we describe the six board features.  Actually 
what we shall describe are the six integer-valued ratings 
given to a board.  (Recall, the board will be given an integer 
rating before a potential Learner move, the board resulting 



from the move will be re-rated, ultimately the ratings will 
be subtracted and the integer difference converted to a val-
ue in the range VeryLow..VeryHigh.)

Corner strength and potential is a sum of strength-
and-potential assessments over each of the four corners.  It 
is intended to be helpful for steering play during earlier 
phases when the corner regions are thinly filled.  What is 
measured is the degree to which a corner region is already 
advantageous or offers positive opportunities or poses risks 
to the Learner.  The assessment adds and subtracts weights 
devised from the author's own experience with Othello, and 
is somewhat ad hoc.

Corner stability is a sum of stability ratings over 
the four corner regions.  The algorithm starts at a corner 
and considers the sequence of increasingly longer diagonal 
lines which are "perpendicular to" the corner and which 
progress towards the board's center.  For a diagonal line, the 
algorithm counts the number of contiguous Learner 
squares which start at an edge and extend inwards, possibly 
all the way to the next edge.  If the Learner squares do ex-
tend to the next edge, then the algorithm proceeds on to the 
next diagonal, else it stops its examination of this corner re-
gion.  Essentially what is counted is the number of squares 
in the largest isosceles right triangle anchored at the corner 
which is entirely occupied by Learner squares.  All the 
squares counted are stable for the Learner.

To describe edge stability and interior stability, we 
first must describe line stability.  Imagine a line of eight 
board squares, each of which is either black or white or un-
occupied.  A typical such line is a board edge, though as 
will be seen we let for example an arbitrary board row also 
be abstracted as such a line.  We solely consider future 
moves onto unoccupied squares of this line.  An occupied 
black square is categorized as being either unstable-for-
black (can be captured by some very next move onto this 
line) or semistable-for-black (not capturable on the very 
next play but is capturable under some combination of fu-
ture moves, some of which may be Black's) or stable-for-
black (cannot be captured by any combination of future 
moves onto this line).  Occupied white squares are similar-
ly categorized.  The term line stability is a bit of a misno-
mer; it is not the stability of the line but rather that of the 
occupied squares on it that interests us.

Line stabilities are not computed on the fly; in-
stead, all lines' stabilities are computed at program start-up 
time and saved in an array (with 3**8 = 6561 components).  
The algorithm for doing so uses dynamic programming:  
assuming we have already computed the stability of every 
line having N unoccupied squares, then we can easily com-
pute the stability of a line with N+1 unoccupied squares.

The computation for the edge stability rating is 
now easily described, and is the sum of measurements for 
the four edges.  We use our line stability table.  For each 
edge the measure is 10*A + 3*B + C, where A is the num-
ber of squares stable for the Learner minus the number sta-
ble for the opponent, and B and C are the analogous 

differences for semistable and unstable.  The coefficients 
10, 3, and 1 are somewhat ad hoc.

We note in passing that corner possession is re-
warded by each of the three measurements described so far.

The procedures for computing corner and edge 
stability carry an extra parameter, a "stability board" whose 
squares get marked as stable for the Learner when they are 
found to be so.  The procedure for computing interior sta-
bility continues to mark this board on its interior squares.  
The interior squares are traversed in an inward spiral:  first 
row 2's positions 2 to 6, then column 7's positions 2 to 6, 
then row 7's positions 7 to 3, then column 2's position's 7 to 
3, then row 3's positions 3 to 5, then column 6's positions 3 
to 5, and so on into the center of the board.  For each inte-
rior square in the spiral, our reasoning, only heuristic, is as 
follows.  If in each of the four bi-directions (horizontal, 
vertical, and the two diagonal ones) an interior square S 
possessed by the Learner has an immediate neighbor which 
is stable for the Learner, then we assert that S is stable for 
the Learner by so marking the stability board.  Barring sat-
isfaction of the antecedent of the preceding sentence, we 
exploit the line stability table as follows.  If the square S is 
stable (versus semistable or unstable) for the Learner when 
viewed as an element of the four lines that are the row, the 
column, and the two (stretched) diagonals containing S, 
then we assert that S is stable for the Learner by so marking 
the stability board.  With respect to the preceding sentence, 
we are stymied (unable to assert that S is stable for the 
Learner) if a diagonal is not stretchable to a full line of 8 
squares.  Stretchable by definition means that one of the di-
agonal's ending edge squares is occupied (by either player) 
and then stretching consists of padding with the color of 
that ending edge square.

Finally, the interior stability rating is the number 
of interior squares marked stable for the Learner.

By a player's immediate mobility we mean the 
number of squares he can now play upon, that is, capture 
from.  By his future mobility we give the meaning the num-
ber of unoccupied squares which are not now playable 
upon but at least do neighbor one of his opponent's squares.  
By his mobility we give the meaning 2 * immediate-mobil-
ity  +  future-mobility.  The coefficients 2 and 1 are some-
what ad hoc.

Let us note that in taking the differences in integer 
board ratings across a potential Learner move, for the mo-
bility feature we make an exception and use the Learner's 
mobility before the move but the opponent's mobility after 
the move.  The difference is then the exchange in the play-
ers' mobilities.

The square advantage rating given a board is sim-
ply the number of squares possessed by the Learner minus 
that by the opponent.  (The difference in ratings across a 
potential Learner move is easily seen to equal 1 + 2*C 
where C is the number of squares captured on the move.)



More about Architecture

Within our computer program for playing Othello 
there are three agents who play the game, namely, the 
Learner, the Teacher, and the Human.  The algorithmic be-
havior of the Learner has already been described.  The 
Teacher provides practical instruction in Othello-playing 
by playing games against the Learner in so-called "learning 
bursts", consisting perhaps of 500 or 5000 consecutive 
games.  Presumably the Teacher provides play which is to 
some degree informed; the Teacher might for example play 
by a weighted squares strategy.  Alternatively, in the cur-
rent version of our program the Teacher is a carbon copy of 
the Learner and plays by accessing (reading and updating) 
the same database of 46,875 heuristics and their WinMea-
sures as is accessed by the Learner.  We call this self-taught 
learning, for in effect the Learner is playing against himself 
in order to learn by experience which are the better moves.

The Human participates interactively.  Typically 
the human dictates that a learning burst take place, then 
plays several interactive games against the Learner, then 
dictates a further learning burst, and so on.

For the database of the 46,875 heuristics and their 
WinMeasures there are several options available.  The 
WinMeasures can be initialized to zero.  Or they can be pre-
weighted so that for instance a large WinMeasure is initial-
ly attributed to any heuristic containing many VeryHigh's 
in its 7-tuple of values.  A third alternative is that the Win-
Measures can be read in from an external file; at the end of 
a session they can also be written to a file.  Using external 
files it is practical to let learning experiments stretch over 
days.

Experimental Results

Next we describe the results of Othello learning 
experiments.  Our work went through a number of versions 
and variants.  Our initial approach was to have the Teacher 
play by a weighted-squares strategy, but the game skill thus 
acquired by the Learner was noticeably weak, and so we 
abandoned such a Teacher in favor of one that was a carbon 
copy of the Learner (self-taught learning).  With respect to 
initial knowledge, we tried three approaches:  all WinMea-
sures start at initial value zero, WinMeasures are initially 
pre-weighted, and thirdly, the author playing interactively 
starts off the learning with 25 games from a practiced play-
er.

Our computer program was written in Ada, 
reached a length of 5000 lines, and was run on a VAX-11/
8600.  For the various approaches, many games -- up to 
50,000 and beyond -- were played.  In general, CPU time 
on the order of 12 hours was required to play 10,000 learn-
ing-burst games.

In our best results, described later, the Learner 
was able to beat the author in better than 60% of the games 
in a small sample of games.

For the various versions, examination of Win-

Measures and the moves associated with them consistently 
showed evidence that learning had taken place.  Recall that 
a heuristic is a 7-tuple whose first component (game phase) 
is in the range 2..4, and whose other six (board features) are 
in the range VeryLow..VeryHigh.  Consistently, 3 or 4 heu-
ristics containing all or nearly all VeryHigh's achieved very 
large WinMeasures.  (Later we suggest a reason why more 
such "good" heuristics did not rise like cream to the com-
parative top.)  Also, risky moves onto corner-endangering 
squares like (1,2) and (2,2) were observed being associated 
with heuristics having very negative WinMeasures.  Addi-
tionally, it was observed that the Learner played towards a 
"cross endgame" whereby the four squares around each of 
the four corners are vacant, those regions are entirely bor-
dered by Learner squares, and the rest of the board is filled.  
There are 16 vacant squares altogether on such a board (so 
the lookahead has not yet taken place), and necessarily the 
Learner will take at least one corner and probably several.

Curiously, for each of our three choices for initial 
knowledge (WinMeasures are initially zero, are pre-
weighted, or thirdly result from 25 games against the au-
thor), it was seen that even after many games only relative-
ly few heuristics actually got used, as demonstrated by the 
fact that their WinMeasures had changed from their initial 
values.   Typically, only about 700 (resp., 2000, 4500) of 
the heuristics for phase 2 (resp., phases 3 and 4) had actu-
ally been used even after 50,000 games.

Our Learner will never play perfect Othello, be-
cause of its subalgorithm for selecting heuristics and 
moves; note that every heuristic retains some likelihood of 
being chosen.  This is a mixed blessing.  On the positive 
side, a good heuristic cannot be permanently blackballed 
due to some applications of it during early losing games.  
On the negative side, poor heuristics always have some 
likelihood, even if small, of being chosen.

Invariably our Learner never learned adequate ag-
gressiveness in corner capturing; perhaps this is because 
only four corner captures can occur in a game.  Similarly, 
the Learner too often made plays that sacrificed corners to 
the author.  We attempted to solve these problems with an 
extra procedure that warped ratings so as to prejudice the 
selection of heuristics when corner play was involved, but 
were unsuccessful.  We believe a distinct improvement 
would be a front-end to move selection that first tries to 
take corners and avoid jeopardizing corners, and barring 
that to make move selection as originally described.

To chart the course of learning we scheduled a 
learning burst of 10,000 games between the Learner and 
Teacher, and then the author played ten or so games against 
the Learner.  This was followed by a further learning burst 
to 20,000 games, then another ten or so games against the 
author, and so on.  Playing ten or so games against the au-
thor provides only a small sample of Learner achievement, 
but no other alternative was available to the author.

Our best results, in which the Learner beat the au-
thor on 7 of 11 games, arose in two different ways.



One of the two "best results" arose by pre-weight-
ing the WinMeasures, followed by only 10,000 learning 
burst games.  Pre-weighting was achieved by adding -500, 
-100, 0, 100, 500, resp., for each occurrence of VeryLow, 
Low, Middling, High, VeryHigh, resp., in the heuristic at 
hand (the maximum pre-weight is 3000).  Under further 
learning beyond the 10,000 game mark, the Learner's suc-
cess against the author declined to winning only 40 to 50 
percent of the ten or so games.  We hypothesize the follow-
ing explanation.  There are good moves which arise only 
relatively rarely, such as taking corners, or moves that 
achieve very high improvements in interior stability.  After 
only 10,000 games the pre-weights are still large enough, 
comparatively, to enable selection of such moves when 
they are available.  After many more learning games the 
WinMeasures of comparatively weaker but more frequent-
ly arising heuristics have grown very large and the better 
moves get swamped.

We believe this same analysis explains why, for 
most of the other variants and approaches we explored, 
even after 50,000 or 60,000 games the Learner's success 
rate against the author was stuck in the 40 to 50 percent 
range.

The second of our best results (Learner wins 7 of 
11 games against the author) was achieved by deepening 
the lookahead on those 11 games.  For all our versions, for 
time reasons the Learner's lookahead during learning bursts 
was not made until only 8 vacant squares remained.  We 
achieved the second of our best results under the following 
scenario.  WinMeasures were initialized to zero, and 
60,000 learning burst games were played.  Then for playing 
against the author, the Learner's lookahead was made when 
10 vacant squares remained.  For timed competitive play 
(timed in the sense that like competitive chess both adver-
saries have a fixed quantity of time for choosing the totality 
of their moves in one game), probably the lookahead could 
be inched up another ply or two.

Further Remarks and Observations

About our experiments we make the following 
general remarks and observations.  Initializing WinMea-
sures via 25 games against an experienced player seems to 
provide too little information to make this approach have 
noticeably different results from the other approaches.

As opposed to the difference in board goodness 
before and after one potential Learner move, we also inves-
tigated a 2-ply approach in which an attempt was made to 
incorporate some consideration for the opponent's most ag-
gressive response, but this proved much too time-expen-
sive.

Phase 4 "good" heuristics developed large Win-
Measures much more rapidly than those of phases 2 and 3.  
This seems to illustrate the propagation of skill backwards 
from game-end towards game-start that is mentioned in [3].  
Moveover, the highly favored phase 2 and 3 heuristics were 
in fact not so "good".  Perhaps an improvement is, after a 

certain amount of learning, to re-initialize WinMeasures 
for phases 2 and 3 and re-start the learning for those phases.

Curiously, playing against the carbon-copy 
Teacher, the Learner consistently won noticeably more of-
ten by playing second than by playing first.  The reason for 
this is unexplained.  Perhaps playing second let the Learner 
more often look ahead 8 moves as opposed to 7.  Perhaps 
in Othello there is an inherent advantage to playing second.

Inspection of heuristics and their WinMeasures 
suggests that the aspect of mobility does not have the great 
significance to mid-game play that Rosenbloom [5] at-
tributes to it.

Concluding Remarks

We cannot claim our Learner was extravagantly 
successful in acquiring skill at Othello, but we do feel the 
degree of learning was quite respectable.  The Learner did 
not invent its own heuristics, rather it weighed among those 
we had provided.  The quality of the provided heuristics 
would seem to place an inevitable upper bound on the game 
skill acquired -- if the heuristics are suboptimal, would not 
even their judicious application still result in suboptimal 
play?

We have marked our Learner's successes and 
weaknesses, and suggested explanations and corrections 
for some of the latter.  Ours was a large problem -- 46,875 
is a large number of heuristics.  The heuristics in a produc-
tion expert system typically number only in the hundreds.  
We retain the belief that the learning algorithm of [3] can 
be successfully used to reveal which are the better heuris-
tics to line up for steering a path to success in, say, an expert 
system for managing a crisis in a nuclear power plant, as 
suggested in [3].
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