

CNS 13

[image: image3.wmf]1

9

[image: image4.wmf]2

1

9

[image: image5.wmf]0

1

2

2

1

0

2

2

2

0

2

2

4

1

2

2

9

0

2

2

18

1

2

2

37

100101

5

4

3

2

1

0

2

R

one

digit

R

zero

digit

R

zero

digit

R

one

digit

R

zero

digit

R

one

digit

(

)

(

)

(

)

(

)

(

)

(

)

Therefore,

 37

10

=

[image: image6.wmf]2

1

9

[image: image7.wmf]1

9

Computer Number

Systems
Based upon material developed by

 Sally Bellacqua, Mary Johnson, and Janet Mulloy

Revised by Charles Brewer, August 2004
Revised by Shane Torbert, July 2006

last revision July 2019
Fairfax County Public Schools

Fairfax, Virginia

0. INTRODUCTION
All instructions and data in computers and calculators are performed on sequences of on-off switches, represented as sequences of 0’s and 1’s. It is convenient to think of sequences of 0’s and 1’s as binary (or base-2) numbers. Since the binary number system easily translates into the octal (base-8) and the hexadecimal (base-16) system, programmers need to think in all three number systems. While high-level languages, such as Java, do not require the programmer to input instructions and data in binary form, knowledge of binary arithmetic is useful in understanding how computers operate.

1. BINARY NUMBER SYSTEM
Our number system is a place-value system, meaning that the symbol’s value depends on its place in the number. The “3” in “300” means something different from the “3” in “30”, and the “3” in “30,000”. As you know, our place-value system is grouped by groups of 10, starting from the right with the ones-place.

 ___ ____ 3 0 0

	ten-thousands
	thousands
	hundreds
	tens
	ones

The base-2, base-8, and base-16 number systems also use place value, but the grouping is by groups of 2, 8, or 16, respectively. Here is “5” in base-2:

 ___ ____ 1 0 1
	 sixteens
	 eights
	 fours
	twos
	ones

	Base 10

(decimal)
	Base 2

(binary)
	Base16

(hexadecimal)
	Base 3
	Base 6
	Base 12

	0
	0
	0
	
	
	

	1
	1
	1
	
	
	

	2
	10
	2
	
	
	

	3
	11
	3
	
	
	

	4
	100
	4
	
	
	

	5
	101
	5
	
	
	

	6
	110
	6
	
	
	

	7
	111
	7
	
	
	

	8
	1000
	8
	
	
	

	9
	1001
	9
	
	
	

	10
	1010
	A
	
	
	

	11
	1011
	B
	
	
	

	12
	1100
	C
	
	
	

	13
	1101
	D
	
	
	

	14
	1110
	E
	
	
	

	15
	1111
	F
	
	
	

	16
	10000
	10
	
	
	

	17
	10001
	11
	
	
	

	18
	10010
	12
	
	
	

	19
	10011
	13
	
	
	

	20
	10100
	14
	
	
	

Our system of counting time has different bases. What is the base of seconds? ______ Of minutes? _____ Of hours? ______ Of months? ______
As you know from elementary school, a number can be expressed as the sum of each digit times its place value. For example,

 1394.2 10 = 1(10)3 + 3(10)2 + 9(10)1 + 4(10)0 + 2(10)-1
 = 1000 + 300 + 90 + 4 + .2

The place value is the base raised to a power. The units place has a power of 0. Fractional place values have negative powers. It is customary to put a dot (called a "decimal point") to indicate where the whole number part ends and the fraction part begins. In general in a place value system,

[image: image1.wmf]8765432101234

bbbbbbbbb.bbbb

Any number in base b can be converted to base 10 by summing the products of each digit and its place value. For example, given a number in binary,
110101 2 = 1(2)5 + 1(2)4 + 0(2)3 + 1(2)2 + 0(2)1 + 1(2)0
 = 1(32) + 1(16) + 0(8) + 1(4) + 0(2) + 1(1)

 = 32 + 16 + 0 + 4 + 0 + 1

 = 5310
Examples:

1) Convert 13F16 to base ten. 2) Convert 1.023 to base 10

 13F16 = 1(16)2 + 3(16)1 + F(16)0

the place value of the "2" is 3-2 or

 = 1(256) + 3(16) + 15(1)

 = 256 + 48 + 15

 = 319 10

therefore, 1.023 = = 1.222222 10
Exercise 1
1. How many digits are there in base 8 (octal)? ______ digits, from ____ through ____
2. Count to eighteen in octal. __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

In problems 3 – 10, convert the base b number to its equivalent in base 10.

3. 159 16 = ________ 10

4. 01101100 2 = ________ 10
5. 3A 16 = _________ 10

6. 10110 2 = _________ 10

7. DC 16 = __________ 10

8. 1010.101 2 = __________ 10
9. 5723 8 = _________ 10

10. 201 3 = ____________ 10
2. ADDING IN DIFFERENT BASES

Adding in different bases follows the familiar addition rules, including when to "carry" a digit. You just need to pay attention to the base. For example, 78 + 38 has a carry operation, namely, 78 + 38 (1010 ((1 group of 8 and 2 left over) = 128

As another example,

 B16 + 616 (1110 + 610 = 1710 ((1 group of 16 and 1 left over) = 1116
Addition in base 2 is so simple that you only have to memorize three rules:

 02 + 02 = 02 and 12 + 02 = 12 and 12 + 12 = 102

Also, memorize that 12 + 12 + 12 = 112

Exercise 2

Add in the indicated base. Then check your answers for 1 – 5 by doing the work in the decimal base (base 10).
	1. 1 2

 + 1 2

	2. 11 2

 + 01 2

	3. 1 1 2

 + 1 1 2

	4. 1 1 1 2

 + 0 1 1 2

	5. 0010 1110 2

+ 0011 1011 2

	 6. 342 8

 + 517 8

	 7. 3A9 16

 + 21C 16

	8. 432 5

 + 123 5

3. CONVERTING BETWEEN BINARY, OCTAL, and HEXADECIMAL

Binary numbers need lots of digits. Programmers noticed that binary can easily be converted to octal. Just group the binary number, e.g. 11001101, into groups of three digits (from the right side), then write the corresponding octal digits.

Example: 11 001 101 = 3158
Similarly, given the same binary number, group it in groups of four digits, and substitute the hexadecimal digits.

Example: 1100 1101 2 = CD16.
Reversing the process also works.
Example: 628 = 110 0102
Example: 3B9 16 = 0011 1011 1001 2
Exercise 3
Convert between binary, octal, and hexadecimal.

1. 01011001 2 = ______8 = _____ 16
2. 54 16 = ________ 2 = ______8
3. 01000001 2 = ______8 = _____ 16
4. 3E 16 = ________ 2 = ______8
5. 00110100.0110 2 = _____ 16

6. 6A.5 16 = _______________ 2
4. CONVERTING BASE-10 NUMBERS TO ANOTHER BASE
While we are primarily interested in being able to convert base-10 numbers to their binary (or hexadecimal) equivalents, there is a convenient algorithm for the conversion that works for all bases. The “Divide and Save” algorithm is simple to use and easy to implement in a computer program.

The technique is to use successive integer division by the desired base until a zero quotient is obtained. The remainders from each division (bottom to top) are written down (from right to left) as the result.
Example:
Convert the base-10 number 37 to binary. On paper, you start by dividing from the bottom:

 Now you try. Convert 2510 to binary.

Check the answer by converting back.
 100101 =

Check by converting back.
Example:

Convert the base-10 number 110 to hexadecimal.

Exercise 4
Convert the following base-10 numbers to the indicated base number.

1. 25 10 = ___________ 2

2. 73 10 = ____________ 16
3. 65 10 = ___________ 2

4. 92 10 = ____________ 16

5. 32767 10 = _______________________ 2 = _______________________ 16
6. 7 10 = ______________ 3
5. REPRESENTATION OF NEGATIVE INTEGERS—Two’s Complement System
So far, we have only talked about positive integers. How should we represent negative integers, so that the binary integers are signed?
Computer scientists have invented several methods. The Intel family of CPUs uses the two’s-complement method to represent negative integers, mostly because it makes addition extremely easy. If you add 2 and -2, you want to get 0. In the two’s-complement system, 0000 0010 and 1111 1110 add by the standard binary addition rules directly to get 0.

Somehow, 1111 1110 (in hex, FE) ought to represent -2. How can we see this?

One way to see this is to look at the table. 0 through 127 count up by ones in the standard binary counting system. If we add 1 more, 1000 0000 "wraps around" to become -128. If we keep counting up by ones, -2 turns out to be 1111 1110, which is what we wanted.

Thus, an 8-bit register can store 256 numbers, from -128 to 127 (in hex, from 80 to 7F). If you want to store bigger or smaller numbers, you need to get a bigger register. Notice that in the two’s-complement system, all positive integers begin with 0 and all negative integers begin with 1.

In Sections 1-4, we were considering binary numbers and place value. We started at 0 and just kept counting. In Section 5, we are considering 8-bit registers and how to store both positive and negative numbers. This means that some binary sequences, e.g.,

1111 1010, could represent two different numbers, either 250 or -6 (or characters, or colors, or sounds, or anything that can be digitized), depending on the situation.

From now on, let's specify we are using signed binary integers in the two's complement system. Binary numbers that begin with "0" are converted to base 10 by the place-value algorithm that was taught in Section 1. Binary numbers that begin with "1" are converted to their two's-complement form by the following algorithm.

Converting from signed binary (in the two's complement system) to base-10:
1) What base-10 integer does the signed binary number, 10111010, represent?

 Since the leading bit is a 1, the number must be negative; therefore, the two’s-complement method is used to find the absolute value.

 Given
– a signed binary number

1011 1010

 Step 1 – Form one’s complement by "flipping" 0s and 1s
0100 0101

Step 2 – Add 1 to form the two’s complement

 + 1
0100 0110

Step 3 – Convert the two's complement

 to the base-10 absolute value

0100 01102 = 7010

Step 4 – Insert the negative sign. Therefore, 1011 10102 = -7010.

2) What base 10 integer does the signed binary number, 0100 1011, represent? ____

Since the leading bit is 0, we convert it using place values, as usual.

Converting a negative integer to the two's complement bit-pattern

To represent –6 as a two's-complement signed binary number:

 First, change the absolute value of the number to binary | - 6 10 | = 0000 0110

 Second, form the one’s complement by "flipping" 0s and 1s

 1111 1001

 Third, add 1

 + 1

to form the two’s complement

 1111 1010

Try it:

Convert -128 to its two’s-complement representation:

Step 1 – Change | -128 | to binary

 _ _ _ _ _ _ _ _

Step 2 – Form the one’s complement

 _ _ _ _ _ _ _ _

Step 3 – Form the two’s complement

 + 1

 _ _ _ _ _ _ _ _

Historical note: In this unit, we will use 8-bits instead of the 32-, or 64-bits that today’s computers actually use. The Apple II and other personal computers of the 1970’s were 8-bit computers.

EXERCISE 5
1 – 4. Form the one’s and two’s complements of the following bit strings.
	BIT STRING
	ONE’S COMPLEMENT
	TWO’S COMPLEMENT

	1010 1011
	
	

	0111 0000
	
	

	0000 0001
	
	

	0000 0000
	
	

5 – 8. Represent each negative integer in 8-bit two’s complement form, then in hex.
	DECIMAL INTEGER
	ABSOLUTE VALUE IN BINARY
	ONE’S COMPLEMENT
	TWO’S COMPLEMENT
	HEX

	-1
	
	
	
	

	-2
	
	
	
	

	-30
	
	
	
	

	-8
	
	
	
	

6. ADDING SIGNED BINARY NUMBERS
Any time you enter, e.g. -2, we have seen that two's complement system translates that into 1111 1110. This may seem complicated, but in this system, *all* arithmetic operations (+ - * / % √) become easier. Addition is just the addition of bits. Subtraction is the addition of two’s complement. (Computers and calculators don’t actually subtract; they just add the two's complement.) Furthermore, multiplication is repeated addition. Division is repeated two’s complement addition. No wonder programmers like the two’s complement system.

Example:
What is the answer to 10 10 + (– 10 10) ?
The 8-bit binary representation of 10 is

0000 1010

The 8-bit binary representation of –10

0000 1010

is the two’s-complement

1111 0101

 + 1

1111 0110

1111 0110
Add the binary numbers and discard the

 1 0000 0000

overflow digit, the result being 0000 0000 2
or 0 10.

Example:
Add these two 8-bit signed binary numbers.

1110 1100

Check your work by converting all three

 +
1101 0110
numbers to base ten.
Check – You check your binary addition by converting all three numbers to base ten. Since all three are negative in this example, the two’s complement method (see Section 5) will be used to find their absolute values. Here is how you should have done it:

ORIGINAL BINARY ((1’s comp + 1 = 2’s comp)
(DECIMAL

[image: image2.wmf]1110

1100

0001

0011

1

0001

0100

20

1101

0110

0010

1001

1

0010

1010

42

1100

0010

0011

1101

1

0011

1110

62

®

+

=

®

-

®

+

=

®

-

®

+

=

®

-

Exercise 6
Add these 8-bit signed binary numbers (using two's complement). Check your work by converting all three numbers to base-10. (The check is more work than the original addition problem.)
1. 0000 1001

2. 0001 1100

 + 1111 1100

 + 1011 0101
Represent these decimal numbers as 8-bit signed binary numbers. Add the binary number and then convert each answer back to base-10 as a check.

3.
- 7

4.
-17

 +
 9

 +
-13

7. REPRESENTATION OF REAL NUMBERS
Real numbers are represented using one of the standard formats, either float or double, as defined by The Institute of Electrical and Electronic Engineers (IEEE). Like scientific notation, these formats use a mantissa (or fractional part) and an exponent part, but of course expressed as binary numbers. For most numbers, the mantissa is normalized, i.e., adjusted to be of the form 1.xxxxxxxx, and then the actual mantissa drops the leading 1. In order to handle negative exponents, 12710 (or 01111111) is added the exponent. Thus, 10000000 represents an exponent of 1.
Some examples of 32-bit floats:

310 = 112 = 1.12 * 21 (0 1000 0000 100 0000 0000 0000 0000 0000
3/410 = 0.112 = 1.12 * 2-1 (0 0111 1110 100 0000 0000 0000 0000 0000
-1010 = -10102 = -1.0102 * 23 (1 1000 0010 010 0000 0000 0000 0000 0000
7.510 = 0111.12 = 1.1112 * 22 (0 1000 0010 111 0000 0000 0000 0000 0000
0.110 = .1100110011001100110011001100110011001100. . . 2 =
 1.1001100110011001100 * 21 (0 1000 0000 100 1100 1100 1100 1100

As you can see, some decimal numbers have an infinite expansion when expressed in binary form. Thus, 0.1 is approximated as 0.100000001490116119384765625 in the computer. This is an example of a round-off error.
The number line is infinite and infinitely dense, but not so with floats and doubles, which are dropped on the number line like breadcrumbs. Since the number of distinct values between consecutive powers of two is constant, floats and doubles are denser closer to zero. Also, very large values have very large gaps between them. All this has real-world consequences for computer scientists, including overflow, underflow, and swamping.
In a 4-bit system, using 2 bits for the exponent and 2 bits for the mantissa, unnormalized and without signs, you can represent 16 values, distributed as shown:

	0000
	0001
	0010
	0011
	0100
	0101
	0110
	0111
	1000
	
	1001
	
	1010
	
	1011
	
	1100
	
	
	
	1101
	
	
	
	1110
	
	
	
	1111
	
	
	
	

	0
	.125
	.25
	.375
	.5
	.675
	.75
	.875
	1
	
	1.25
	
	1.5
	
	1.75
	
	2
	
	
	
	2.5
	
	
	
	3
	
	
	
	3.5
	
	
	
	

Here is an example of swamping: 2.000 + 0.125 = 2.000 because 2.000 is the closest value to 2.125 that we can represent (the next-closest value is 2.500).

	Special Values
	float
	double

	
	32 bits: 1 for sign

 8 for exponent (E)

 23 for mantissa (F)
	64 bits: 1 for sign

 11 for exponent (E)

 52 for mantissa (F)

	NaN (Not a Number)
	E is 255 and F is nonzero
01111111100000100000000000000000
11111111100000100000000000000000
	E is 2047 and F is nonzero

	Infinity or -Infinity
	E is 255 and F is 0
01111111100000000000000000000000

11111111100000000000000000000000
	E is 2047 and F is 0

	0 or -0
	E is 0 and F is 0
00000000000000000000000000000000

10000000000000000000000000000000
	E is 0 and F is 0

	largest positive value
	E is 254 and F is all 1's.
 i.e. 2^127 ≈ 10^38
01111111011111111111111111111111
	E is 2047. 2^1037≈10^307

	smallest positive value.
	E is 0, F is 1. i.e. 2^-149 ≈ 10^-45
00000000000000000000000000000001
	E is 0, F is -52 i.e.

 2^-1074 ≈ 10^-324

	epsilon
	F is -23. i.e. 2^-24 ≈ 10^-8
	F is -52. i.e. 2^-52 ≈10^-16

Notice that NaN, Infinity, and Negative Infinity are actually stored in double variables.

One important value is given the special name machine epsilon. Epsilon is the smallest number that can be added to 1 and yield a result that is different from 1. That is, for doubles, 1.0 + something less than 10^-16 is indistinguishable from 1.0. The epsilon for the toy 4-bit representation is 0.125, half-way between the two breadcrumbs 1.000 and 1.250.
Note that machine epsilon is not the smallest positive number that can be represented, which is, for floats, 2^-149 ≈ 10^-45 and, for doubles, 2^-1074 or 10^-324.

Code Peculiarities in Java

	input
	output
	explanation

	double x = Math.sqrt(-1);
	
	

	System.out.println(x +" " + (x == x));

	NaN false
	// Evidently not-a-number is // not equal to itself.

	double y = 1.0 / 0.0;
	
	

	System.out.println(y +" " + (y == y+ 1));
	Infinity true
	// infinity equals infinity-plus-// one.

	double z = -1.0 / 0.0;
	
	

	System.out.println(y +" " + (y == y*2));
	-Infinity true
	// negative infinity equals

// a doubled negative infinity

	double a, b;
	
	

	if(a == b)
	
	// not safe! Never compare

	
	
	// doubles for equality.

	if(Math.abs(a – b) < 0.00000001)
	
	// Always compare within a

// tolerance.

8. MULTIPLICATION IN BINARY
The Arithmetic Logic Unit (ALU) in the CPU multiplies binary numbers using a “shift left” and “shift right” logic. The following function uses a multiplying algorithm that illustrates the operation of this shift logic.

int result (int x, int y)

{

 int z = 0;

 while (y != 0)

 {

 if (y % 2 == 1)

// If y is odd add x to interim result (z)

 z = z + x;

 x = 2 * x;

// Shifts binary number left

 y = y / 2 ;

// Shifts binary number right

 }

 return z;

// When y is 0, return interim result

}

A call to this function with x = 7 and y =13 would return 91 in this way:

	
	Decimal
	Binary

	Iteration
	z
	x
	y
	z
	x
	y

	0
	 0
	 7
	13
	0000 0000
	0000 0111
	0000 1101

	1
	 7
	 14
	 6
	0000 0111
	0000 1110
	0000 0110

	2
	 7
	 28
	 3
	0000 0111
	0001 1100
	0000 0011

	3
	35
	 56
	 1
	0010 0011
	0011 1000
	0000 0001

	4
	91
	112
	 0
	0101 1011
	0111 0000
	0000 0000

9. REPRESENTATIONS OF CHARACTERS
	DEC
	OCT
	HEX
	BIN
	Symbol

	
	
	
	01000001
	

	97
	
	
	
	

	
	132
	
	
	

	
	
	30
	
	

	
	
	
	00100000
	<space>

Characters are normally represented on PCs using the 8-bit ASCII (American Standard Code for Information Interchange). The ASCII code defines 128 characters from 0 to 127 using the first seven of the eight bits in a byte. The codes for letters start at 65 (or 01000001 or 4116) for ‘A’ and end with 122 (or 01111010 or 7A16) for ‘z’. Look at the partial ASCII chart on the next page, or at http://www.ascii-code.com/ . Complete this table:

ASCII handles Latin characters. To include the letters of other languages, a 16-bit representation of characters called Unicode was created. Unicode is used by the Java compiler. Still another code is used to represent oriental languages.
Some mainframe computers use still another format for character representation called EBCDIC (Extended Binary Coded Decimal Interchange Code).

	DEC
	OCT
	HEX
	BIN
	Symbol
	
	DEC
	OCT
	HEX
	BIN
	Symbol

	48
	060
	30
	00110000
	0
	
	87
	127
	57
	01010111
	W

	49
	061
	31
	00110001
	1
	
	88
	130
	58
	01011000
	X

	50
	062
	32
	00110010
	2
	
	89
	131
	59
	01011001
	Y

	51
	063
	33
	00110011
	3
	
	90
	132
	5A
	01011010
	Z

	52
	064
	34
	00110100
	4
	
	91
	133
	5B
	01011011
	[

	53
	065
	35
	00110101
	5
	
	92
	134
	5C
	01011100
	\

	54
	066
	36
	00110110
	6
	
	93
	135
	5D
	01011101
]

	55
	067
	37
	00110111
	7
	
	94
	136
	5E
	01011110
	^

	56
	070
	38
	00111000
	8
	
	95
	137
	5F
	01011111
	_

	57
	071
	39
	00111001
	9
	
	96
	140
	60
	01100000
	`

	58
	072
	3A
	00111010
	:
	
	97
	141
	61
	01100001
	a

	59
	073
	3B
	00111011
	;
	
	98
	142
	62
	01100010
	b

	60
	074
	3C
	00111100
	<
	
	99
	143
	63
	01100011
	c

	61
	075
	3D
	00111101
	=
	
	100
	144
	64
	01100100
	d

	62
	076
	3E
	00111110
	>
	
	101
	145
	65
	01100101
	e

	63
	077
	3F
	00111111
	?
	
	102
	146
	66
	01100110
	f

	64
	100
	40
	01000000
	@
	
	103
	147
	67
	01100111
	g

	65
	101
	41
	01000001
	A
	
	104
	150
	68
	01101000
	h

	66
	102
	42
	01000010
	B
	
	105
	151
	69
	01101001
	i

	67
	103
	43
	01000011
	C
	
	106
	152
	6A
	01101010
	j

	68
	104
	44
	01000100
	D
	
	107
	153
	6B
	01101011
	k

	69
	105
	45
	01000101
	E
	
	108
	154
	6C
	01101100
	l

	70
	106
	46
	01000110
	F
	
	109
	155
	6D
	01101101
	m

	71
	107
	47
	01000111
	G
	
	110
	156
	6E
	01101110
	n

	72
	110
	48
	01001000
	H
	
	111
	157
	6F
	01101111
	o

	73
	111
	49
	01001001
	I
	
	112
	160
	70
	01110000
	p

	74
	112
	4A
	01001010
	J
	
	113
	161
	71
	01110001
	q

	75
	113
	4B
	01001011
	K
	
	114
	162
	72
	01110010
	r

	76
	114
	4C
	01001100
	L
	
	115
	163
	73
	01110011
	s

	77
	115
	4D
	01001101
	M
	
	116
	164
	74
	01110100
	t

	78
	116
	4E
	01001110
	N
	
	117
	165
	75
	01110101
	u

	79
	117
	4F
	01001111
	O
	
	118
	166
	76
	01110110
	v

	80
	120
	50
	01010000
	P
	
	119
	167
	77
	01110111
	w

	81
	121
	51
	01010001
	Q
	
	120
	170
	78
	01111000
	x

	82
	122
	52
	01010010
	R
	
	121
	171
	79
	01111001
	y

	83
	123
	53
	01010011
	S
	
	122
	172
	7A
	01111010
	z

	84
	124
	54
	01010100
	T
	
	
	
	
	
	

	85
	125
	55
	01010101
	U
	
	
	
	
	
	

	86
	126
	56
	01010110
	V
	
	
	
	
	
	

The Primitive Data Types in Java
	
	Keyword
	Size
	Range
	Intel Format
	Typical Use

	Integers
	byte
	8-bit
	-128 to 127
	two's complement
	where space is a concern

	
	short
	16-bit
	-32768 to 32767
	two's complement
	

	
	int
	32-bit
	-231 to 231 -1
	two's complement
	for integers

	
	long
	64-bit
	
	two's complement
	elapsed time in milliseconds,

large Fibonacci numbers

financial calculations

	Real
	float
	32-bit
	approx 4.28 billion
	IEEE 754
	

	
	double
	64-bit
	approx 1.84 * 10^19
	IEEE 754
	scientific uses

	
	char
	16-bit
	
	Unicode character
	single letters or characters

	
	boolean
	1 bit
	
	0, 1
	true or false

10. REVIEW EXERCISES

1. What is the largest digit in base 16?

2. What is the base-ten value of the underlined bit in the

binary number 0 1 1 0 1 1 1 0?

3. Convert 1245 to base 10.

4. Express the hexadecimal number FF in base ten.

5.
Express 12A16 in binary, then in octal.
 ___________ ___________
6.
Halloween = Christmas because 31 OCT = ___ DEC

7. Find the two’s complement of 1101 0111.

8.
Add these hexadecimal numbers.

4F

Leave your answer in hexadecimal.
 + 68

9. 1100 1111 is the signed 8-bit representation

of what base ten number?

10.
Convert 3710 to binary.

11. Express the binary 0101 1011.0110 in hex and in octal. _________ ________

12.
Express 8710 in base sixteen.

13. Convert 2310 to its signed 8-bit representation.

14. Perform the following addition of two
 1111 0011

8-bit signed binary numbers. Check
+ 0000 1101
your work by converting each binary

number into base ten.

15. Convert the following base ten numbers

- 37

to binary and add. Check your result
 +
 23

by converting the answer back to base ten. -14
FCPS

Packets

The table to the right shows how numbers are represented in different bases.

Different bases group the digits differently. That’s the reason for place value.

Try counting in base 3, 6, and 12.

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

carry sum

carry sum

carry sum

Binary�
Octal�
Hex�
�
0000�
0�
0�
�
0001�
1�
1�
�
0010�
2�
2�
�
0011�
3�
3�
�
0100�
4�
4�
�
0101�
5�
5�
�
0110�
6�
6�
�
0111�
7�
7�
�
1000�
�
8�
�
1001�
�
9�
�
1010�
�
A�
�
1011�
�
B�
�
1100�
�
C�
�
1101�
�
D�
�
1110�
�
E�
�
1111�
�
F�
�

� EMBED Equation ���

2 │25

Therefore, 2510 = _________ 2

 0 R 6

 16 | 6 R 14 (E

16 │110

 Therefore, 11010 = 6E16

127�
0111 1111�
7F�
�
126�
0111 1110�
7E�
�
125�
0111 1101�
7D�
�
. . .�
. . .�
�
�
4�
0000 0100�
04�
�
3�
0000 0011�
03�
�
2�
0000 0010�
02�
�
1�
0000 0001�
01�
�
0�
0000 0000�
00�
�
-1�
1111 1111�
FF�
�
-2�
1111 1110�
FE�
�
-3�
1111 1101�
FD�
�
-4�
1111 1100�
FC�
�
. . .�
. . .�
�
�
-126�
1000 0010�
82�
�
-127�
1000 0001�
81�
�
-128�
1000 0000�
 80�
�

discard

 2 0000 0010

+-2 + 1111 1110

 0 1 0000 0000

Sign�1 bit

Actual Normalized Mantissa � 23 bits

Exponent +127� 8 bits

Binary�

Normalized

Mantissa �

Exponent �

_1355897711

_1624954971.unknown

_1624955104.unknown

_965652515

_965420833

